

INTRO TO BAYESIAN NETWORKS AND CAUSALITY

ANDRÉ E. DOS SANTOS andreeds.github.io dossantos@ualberta.ca 2020

BAYESIAN NETWORKS

PROBABILISTIC GRAPHICAL MODEL

Pearl

BAYESIAN NETWORKS

PROBABILISTIC GRAPHICAL MODEL

Pearl

1988

CPT EXAMPLE

app	fire	burglar	p(app fire , burglar)	
Т	т	Т	1.0	
F	т	Т	0.0	
Т	F	Т	0.8	
F	F	Т	0.2	
Т	Т	F	0.9	
F	Т	F	0.1	
Т	F	F	0.01	
F	F	F	0.99	

The Π of the CPTs is a **joint probability distribution** $\rho(U)$

 $\rho(\mathbf{U}) = \rho(\mathbf{fire}) \cdot \rho(\mathbf{burglar}) \cdot \rho(\mathbf{smoke} | \mathbf{fire}) \cdot \rho(\mathbf{app} | \mathbf{fire}, \mathbf{burglar})$

DARWINIAN NETWORKS

DARWINIAN NETWORKS

P(g|e, f)

= 🕐

MARGINALIZATION IS REPLICATION AND NATURAL SELECTION	$ \begin{array}{c} \circ c & \circ d \\ \circ e & \circ h \end{array} \\ \hline \circ c & \circ d \\ \circ e & \circ h \end{array} \begin{array}{c} \bullet d \\ \circ e & \circ h \end{array} \\ \hline \circ e & \circ h \end{array} $
$\sum_{c} P(c, e d, h) = P(e d, h)$	•d •e •h

BayesFraud Predictive Analytics

Identify Fraud, **improve efficiency** and **reduce losses** with the advanced computing power of **BayesFraud Analytics**. The results of implementing BayesFraud are compelling: more attempted fraud is exposed, and claims costs and premiums are kept at a minimum.

NP-hard	
Inference	
Inference in BNs is a NP-hard task	
· · · · · · · · · · · · · · · · · · ·	

SUM-PRODUCT NETWORKS

GENERATIVE DEEP LEARNING MODEL

Poon and Domingos

UNDER CERTAIN

CONDITIONS

SUM-PRODUCT NETWORKS

SUM-PRODUCT NETWORKS

DIFFERENTIAL APPROACH

SPN can represent a network polynomial

BACK PROPAGATION

derivatives can be evaluated for all random variables of the model

 $\frac{\partial \mathcal{S}(\mathbf{e})}{\partial \lambda_{X=x}} = \mathcal{S}(X=x, \mathbf{e} \setminus X)$

tractable inference

SPNs follows a rigorous probabilistic structure with the benet of tractable inference in the size of the network

RELATED WORK

Darwiche 1999, 2001 Darwiche and Marquis 2002

AND/OR graphs

Dechter and Mateescu 2007

Darwiche 2003

Poon and Domingos 2011 Vergari et al. 2015 Sharir et al. 2018 Butz et al. 2010

RELATED WORK

Darwiche 1999, 2001 Darwiche and Marquis 2002

Jarwiche 2003

Poon and Domingos 2011 Vergari et al. 2015 Sharir et al. 2018 Butz et al. 2019

32

AND/OR graphs

Dechter and Mateescu 2007

INTRO TO BAYESIAN NETWORKS AND CAUSALITY

ANDRÉ E. DOS SANTOS andreeds.github.io dossantos@ualberta.ca 2020

Does smoking cause cancer?

Does smoking cause cancer?

Causality

Causality

- Gives proper vocabulary for causation
- Difference with correlation
- Ladder of Causation: Association, Intervention, and Counterfactuals
- seeing vs doing

Does smoking cause cancer?

Does smoking cause cancer?

ρ(cancer | smoking) ?

smoking does cause cancer!

p(cancer | *do*(smoking))

human intuition is grounded in casual, not statistical, logic

The Book of Why Pearl & Mackenzie, 2018

Data do not understand causes and effects; humans do.

The Book of Why Pearl & Mackenzie, 2018

data are profoundly dumb

The Book of Why Pearl & Mackenzie, 2018

