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BN EXAMPLE

U - { fire, burglar, smoke, app }



CPT EXAMPLE
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The ] of the CPTs is a joint probability distribution p(U)

N
by

P(U) = pffire) - p(burglar) - p(smoke | fire) - p(app | fire, burglar) 16
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DARWINIAN NETWORKS

DARWINIAN NETWORKS

(CAl 2015, Cl 2016) o g ‘ e

of

CLEVER WAY TO VIEW CPTs

P(gle, f)




DARWINIAN NETWORKS

POPULATION OF MICROORGANISMS

P(gle, f)
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HUGINEXPERT PRODUCTS v SOLUTIONS v INDUSTRY TECHNOLOGY RESOURCES ABOUT v CONTACT Q

BayesFraud Predictive Analytics

Identify Fraud, improve efficiency and reduce losses with the advanced computing power
of BayesFraud Analytics. The results of implementing BayesFraud are compelling:
more attempted fraud is exposed, and claims costs and premiums are kept at a minimum.

READ MORE GET FREE DEMO
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SUM-PRODUCT NETWORKS

GENERATIVE DEEP LEARNING MODEL

PROBABILISTIC REASONING
NOT A "BLACK BOX"

EFFICIENT INFERENCE
UNDER CERTAIN
CONDITIONS

Poon and Domingos
2011 26
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SUM-PRODUCT
NETWORKS

DIFFERENTIAL APPROACH

SPN can represent a network polynomial

BACK PROPAGATION

derivatives can be evaluated for all
random variables of the model
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tractable
inference

SPNSs follows a rigorous probabilistic structure
with the benet of tractable inference in the
size of the network
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Does smoking cause cancer?
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Does smoking cause cancer?

&

p( cancer | smoking) ?
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Causality

e Gives proper vocabulary for
causation
Difference with correlation

e Ladder of Causation: Association,
Intervention, and Counterfactuals

e seeingvsdoing
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smoking does cause cancer!

&

p( cancer | do(smoking) )
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o baficbial logi

The Book of Why
Pearl & Mackenzie, 2018




The Book of Why
Pearl & Mackenzie, 2018




data are
profoundly
dumb

The Book of Why
Pearl & Mackenzie, 2018




